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Abstract A direct genetic algorithm (GA) approach with kinetic base, to provide
effective numerical estimates of vulcanization level for EPDM cross-linked with accel-
erated sulphur is presented. The model requires a preliminary characterization of rub-
ber through standard rheometer tests. A recently presented kinetic exponential model
is used as starting point to develop the algorithm proposed. In such a model, three
kinetic constants have to be determined by means of a non-linear least-squares curve
fitting. The approach proposed circumvents a sometimes inefficient and not convergent
non-linear data fitting, disregarding at a first attempt reversion and finding the local
minimum of a suitable two-variable error function, to have an estimate of the first two
kinetic constants. A comparison between present GA approach and traditional gradi-
ent based algorithms is discussed. The last constant, representing reversion is again
evaluated through a minimization performed on a single variable error function. The
applicability of the approach is immediate and makes the model extremely appealing
when fast and reliable estimates of crosslinking density of cured EPDM are required.
To show the capabilities of the approach proposed, a comprehensive comparison with
both available experimental data and results obtained numerically with a least square
exponential model for a real compound at different temperatures is provided.
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1 Introduction

A good vulcanization, macroscopically intended as the mechanical performance of
an item after curing, is obtained when the level of reticulation reached point by point
by a rubber specimen subjected to prescribed temperature and cure time conditions
is optimal. The most straightforward way to predict such vulcanization degree is the
utilization of suitable theoretical or numerical models. For peroxidic curing, literature
is wide, see e.g. [1–7], whereas for sulphur vulcanization little references are at dis-
posal, because of the extremely intricate crosslink chemistry, associated to multiple
reactions occurring in series and parallel. At present, while the utilization of sulphur
is quantitatively predominant for economic reasons, comprehensive models seem still
a few, despite the technology goes back to Goodyear [8–11].

The present paper may be regarded as a further improvement in the efficiency of a
numerical approach developed in the last few years by the Author [12–16] both from
a heuristic and kinetic standpoint, to predict the vulcanization degree of rubber cured
with sulphur.

From a mathematical point of view, the model relies into a second order non homo-
geneous differential equation with constant coefficients, where a closed form solution
exists. The function representing the final polymer crosslink density is expressed by
the sum of three exponential functions, all depending on both curing time and three
reaction kinetic constants, the latter further depending on curing temperature.

An evaluation of such kinetic constants has been attempted through experimental
data fitting on the so-called rheometer test [17–19]. The fundamental importance of
this test for the experimental characterization of crosslinking has been acknowledged
in the recent past by many authors, especially Poh and co-workers [20–24]. Such stan-
dard test is usually performed maintaining a small rubber cylindrical specimen inside
a chamber at fixed vulcanization temperature, where a metallic disc oscillates. Torque
resistance to oscillation is registered at increasing exposition times and plotted in a so-
called rheometer chart or cure curve, thus giving indirect macroscopic information on
rubber reticulation kinetics at fixed temperature. Typically, both natural and synthetic
rubber exhibit a decrease in the initial part of the test, followed by a sudden increase at
approximately 1/3 of time needed to complete the test (scorch time). In several cases,
torque decreases near the end of the experimentation, such behavior being commonly
associated to reversion.

Reversion occurs quite frequently in practice and consists in a remarkable decrease
of rubber vulcanized properties at the end of the curing process. Chen and co-work-
ers [25] have shown that this phenomenon seems to appear when two reactions are
competing during vulcanization. Reversion is often associated with high-temperature
curing. In agreement with the studies conducted by Loo [26], it can be stated that,
generally, when the cure temperature rises, the crosslink density drops, thus increas-
ing the degree of reversion. Morrison and Porter [27] confirmed that the observed
reduction in vulcanizate properties is caused by two reactions proceeding in parallel,
i.e. de-sulphuration and decomposition, see Table 1.

A single compound has its own characteristic cure curve at fixed temperature, which
fully describes from a macroscopic point of view the blend reticulation. A change in
both accelerators molar ratios and temperature room changes the cure curve.
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Table 1 Products and schematic reaction mechanisms of accelerated sulphur vulcanization of poly-diene
and EPDM elastomers

Reaction
ID

Compounds Process/reaction Kinetic
constant

Model
constants

NA

S8 + accelerators + ZnO + stearicacid
→

soluble sulphurate zinc complex (A)
+ polydiene elastomers (P)

Mechanical
mixing by open
roll mill,
internal mixers
and/or extruders
at T < 100 ◦C

NA NA

(a) P + A

K1
︷︸︸︷→ P∗

1 Allylic substitution K1 K1

(b) P∗
1

K2
︷︸︸︷→ P Disproportionation K2 K2

(c) Pv

K3
︷︸︸︷→ Qx Oxidation K3 K̃

(d) Pv

K4
︷︸︸︷→ De De-sulphuration K4

(e) Pv

K5
︷︸︸︷→ Pv f De-vulcanization K5

Milani and Milani [14,15] estimated numerically reticulation kinetic constants by
means of non-linear least squares performed either on a system of first order dif-
ferential equations [28] or on a single second order differential equation [14]. Such
approach has been recently superseded by the same authors in [16], and simplified
closed form formulas have been provided to avoid tedious and sometimes inefficient
numerical procedures based on non-linear programming routines.

In this paper, a new very efficient numerical procedure is proposed to determine
numerically kinetic constants. The model moves its steps from the simplified formula
proposed in [16] for vulcanization without reversion. Such model is a good base to
determine the first two kinetic constants, say K1 and K2, whereas the third (K̃ , which
represents the amount of reversion) is a-posteriori evaluated once the first two kinetic
constants are known.

In absence of reversion, it is shown that the function representing the relative error
between experimental and numerical crosslinking density at each sampled point dur-
ing the vulcanization process is a two variables function, being independent variables
K1 and K2, symmetric with respect to K1 and K2.

It is shown how such cumulative error function has two symmetric minimum points,
providing the best fitting values of K1 and K2. Such minimum may be evaluated both
by means of either standard gradient based approaches [29,30], or Genetic Algo-
rithms (GAs) [31–33], which seem more indicated for such specific problem where
the objective function is the sum of relative errors between sampled and predicted
values. The last constant, representing reversion is again evaluated through a minimi-
zation performed on a single variable error function. The applicability of the approach
is immediate and makes the model extremely appealing when fast and reliable esti-
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mates of crosslinking density of cured EPDM are required. To show the capabilities of
the approach proposed, a comprehensive comparison with both available experimen-
tal data and results obtained numerically with a least square exponential model for a
real compound at different temperatures is provided. The numerical example shows a
considerable speed-up of computational time when the GA proposed is used instead
of gradient based methods.

2 Chemistry of vulcanization

Pioneering analytical contributions regarding vulcanization with sulphur, almost
always, may be regarded as simplified approaches allowing a crude estimation of the
final crosslinking degree of small specimens, under controlled time and temperature
conditions, see e.g. [34–39]. Conceived essentially for natural rubber, they basically
rely into simplified kinetic models enforced to follow differential equations similar to
those used for peroxidic curing, basing on an experimental data fitting performed on
rheometer charts, to deduce kinetic constants.

To circumvent limitations of such models in the application of EPDM rubber, the
mechanisms at the base of vulcanization for such material should be properly consid-
ered.

For EPDM rubber, the commonly accepted basic reactions involved—see also [14,
39,40]—are summarized in Table 1. In Table 1, P and A are the polymer (EPDM) and
soluble sulphureted zinc complex (S8 + accelerators + ZnO + stearic acid) respec-
tively, P∗

1 is the pendent sulfur (crosslink precursor), Pv is the reticulated EPDM,
Pv f is the matured cross-link, Qx is the oxidation product, De represents diaryl-disul-
phide and K1,...,5 are kinetic reaction constants. Here it is worth emphasizing that
K1,...,5 are temperature dependent quantities, hence they rigorously should be indi-
cated as K1,...,5(T ), where T is the absolute temperature. In what follows, for the sake
of simplicity, the temperature dependence will be left out.

Reaction (a) in Table 1 represents the allylic substitution, reaction (b) is the dispro-
portionation, whereas reactions (c) (d) and (e) occurring in parallel are respectively
the oxidation, the de-sulphuration and the de-vulcanization.

A purely phenomenological interpretation of sulphur vulcanization has been
recently proposed by the Author in [12,13], respectively in absence and presence
of reversion. In both models a curve fitting is proposed, which approximates the rhe-
ometer chart by means of two parabolas and one hyperbola. In case of reversion, the
hyperbola is rotated with respect to coordinate axes. While the application of such
model is very straightforward for practical purposes, the absence of a kinetic base
does not permit to generalize the models to any vulcanization temperature directly
from the numerical model and a huge amount of experimental data is needed.

To supersede such limitation, very recently, in [14,15] a relatively simple numerical
model basing on actual reaction kinetics of Table 1 has been proposed, where rubber
crosslinking density during vulcanization may be found solving a non-homogeneous
second order differential equation with unknown constant coefficients. The approach
is fully based on reaction kinetic characterizing EPDM sulphur curing. Independent
unknown coefficients are only three, and may be regarded as a combination of kinetic
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constants associated to partial reactions occurring during vulcanization, Table 1. Mi-
lani and Milani [14,15] proposed to estimate numerically independent coefficients
through a data fitting on experimental rheometer curves available for a given com-
pound, thus indirectly evaluating the crosslinking degree from a macroscopic test.
The approach is mathematically rather simple, but has the drawback of requiring a
material identification through non-linear least square routines or large scale Genetic
Algorithms with three independent variables.

Available software is usually stable, but sometimes may be tedious in the calibra-
tion of code options, as for instance the choice of the initial iteration values for the
independent variables to identify. To circumvent such intrinsic limitation of the proce-
dure, and to make it immediately applicable by manufacturers, in the present paper a
new approach, which still bases on the original model proposed in [14,15], but allows
a kinetic characterization of the parameters by means of the minimization of simple
functions, is presented.

The first improvement relies into the approximation of the numerical cure curve
provided in [14,15] with a two-variable function without reversion.

Such function, depending exclusively on K1 and K2 kinetic constants (here regarded
as problem unknowns), is used to evaluate the cumulative relative error e between
numerical and experimental data. e is still a two-variable function, symmetric around
the first quadrant bisecting line and admitting two symmetric minimum points in cor-
respondence of K1 and K2 values allowing an optimal fitting of the experimental data.

The second improvement relies into the determination of e minimum points by
means of a non-standard Genetic Algorithm

The improved model is tested at three different temperatures on a real EPDM com-
pound, exhibiting remarkable reversion over 180 ◦C. Rheometer charts so evaluated
are compared with curves provided by the model proposed in [14,15], available exper-
imental data and a simplified approached without reversion. Finally kinetic constants
so obtained are again compared with those provided by an approach based on lin-
ear least square fitting of the second order non homogeneous differential equation by
Milani and Milani [14,15].

Within the limits of the benchmark discussed, results are in excellent agreement
with existing literature, exhibiting errors in the estimation of kinetic constants not
exceeding 5 %, meaning that the direct procedure presented may represent a valuable
tool for all manufactures interested in a fast prediction of the level of crosslinking of
EPDM cured with sulphur.

3 GA kinetic numerical model

In [15], an exponential model to interpret, from a kinetic point of view, vulcanization
of EPDM cured with accelerated sulphur was proposed. The model is quite appealing,
because allows for a mathematical estimate of EPDM crosslinking density. However,
kinetic constants calibration has to be done on rheometer data through best fitting and
with the subsequent utilization of non-linear least square routines. To supersede such
major limitation exhibited by [15] model, in [16] a non-standard alternative proce-
dure is proposed. Essentially, several restrictive hypotheses on the free-variables are
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Fig. 1 Typical experimental
behaviour of a rubber compound
during rheometer test
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assumed, disregarding suitably the contribution of some terms within the formulation,
and providing closed form formulas for a direct, despite approximate, evaluation of
the constants.

Here, a further improved approach is proposed, which avoids the assumption of
questionable hypotheses on the free-variables involved.

To make the model fully clear, the main features related to the exponential model
proposed in [14,15] are hereafter briefly recalled. As a matter of fact, the worldwide
recognized standard experimental test to evaluate macroscopically the vulcanization
characteristics of vulcanizable rubber compounds is the so-called curometer test [34].

In one version of such a device (oscillating disc rheometer) the rubber sample is
enclosed within a heated chamber. Vulcanization is measured by the increase in the
torque required to maintain a fixed amplitude of oscillation at a given temperature.
The torque is thus roughly proportional to reticulation. The torque is plotted against
time to give a so-called rheometer chart, rheograph or cure curve, which exhibits a
number of features used to compare cure.

In a rheometer chart, the resistance to oscillation (torque) is measured and recorded
as a function of time, as in Fig. 1. In practice, three different cases can occur:
(1) the curve reaches a maximum asymptotically, (2) the curve reaches a maximum
and then decreases (reversion) and (3) the curve increases monotonically after the
scorch point t2. In Fig. 1 the so called t90 point is also represented. It is defined as the
time to achieve 90 % cure. The second case is encountered very frequently in prac-
tice, because reversion is a distinguishing characteristic of sulphur curing (Table 1),
especially at high temperatures.

The numerical algorithm proposed is based on the experimental use of rheometers
at different temperatures, which allows collecting a suitable database of experimental
data regarding cure curves at increasing temperatures and their successive interpolation
by means of a simple kinetic mathematical formulation.
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At present, the knowledge regarding the chemistry of accelerated sulphur vulcaniza-
tion seems a bit fragmented; some useful experimental data are available from Poh and
co-workers [20–24], who observed a marked relation among scorch time, amount of
activators used and rheometer temperatures. Unfortunately, numerical and/or theoreti-
cal models in this field are a few and mainly based on phenomenological considerations
[37,39].

At present, it is commonly accepted that chemical reactions occurring during sulfur
vulcanization, Table 1, obey the following rate equations:

d P

dt
= −K1 AP

d Pv

dt
= K2 P∗

1 − K3 Qx − K4 De − K5 Pv f

d Qx

dt
= K3 Pv

d De

dt
= K4 Pv

d Pv f

dt
= K5 Pv (1)

By means of the so called xyz method, independent variables may be established.
From stoichiometry of the reaction, it can be argued that:

A = A0 − x

P = P0 − x

P∗
1 = x − y = (P0 − P) − y = (P0 − P) − (

Pv + Qx + De + Pv f

)

Pv = y − z − q − r

Qx = z

De = q

Pv f = r (2)

where x = P(t), y = Pv(t), z = Qx (t), q = De(t), r = Pv f (t) identify independent
variables, P0 and A0 are the initial molar concentrations of polymer and curing agent
(or better the soluble sulphur agent zinc complex, i.e. S8+Accelerators+ZnO+Stearic
acid) respectively. Typically they are known production parameters (they may obvi-
ously vary from case to case) and they are obtained mixing all the components in an
internal mixed before vulcanization.

The aim of the approach is to provide an analytical expression for vulcanized rubber,
i.e. concentration of Pv(t) with respect to time.

From (1) and (2), the following set of differential equations is deduced:

(a)
d P

dt
= −K1 AP

(b)
d Pv

dt
= K2 P∗

1 − K3 Qx − K4 De − K5 Pv f
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= K2
[

(P0 − P) − (

Pv + Qx + De + Pv f

)]− K3 Qx − K4 De − K5 Pv f

(c)
d Qx

dt
= K3 Pv

(d)
d De

dt
= K4 Pv

(e)
d Pv f

dt
= K5 Pv (3)

Obviously the first order differential equation system (3) can be solved using a standard
Runge-Kutta numerical approach [28,29]. However, such a procedure, when coupled
with a non-linear least square algorithm (as in the present case) may become very
tedious to be performed (especially for stiff problems) and in some cases may fail to
converge during experimental data fitting. Here, an alternative procedure based on the
derivation of a single differential equation is adopted.

Milani and Milani in [13,14] deduced from (3) the following single second order
non homogeneous differential equation with constant coefficients:

d2 Pv

dt2 + K2
d Pv

dt
+ K̃ 2 Pv = −K2

d P

dt
= K1 K2 P2

0

(P0 K1t + 1)2 (4)

Equation (4) admits the following closed form solution in the normalized concentration
of vulcanized polymer Pv(t):

Pv (t) = C1e(α+β)t + C2e(α−β)t + ρe−K1 P0t

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

C2 = ρ
(

− K1 P0
2β

− α
2β

− 1
2

)

C1 = ρ
(

K1 P0
2β

+ α
2β

− 1
2

)

ρ = K1 K2 P2
0

[

(K1 P0)
2 − K2 (K1 P0) + K̃ 2

]−1

α = − K2
2

β =
√

(K2/2)2 − K̃ 2

K̃ 2 = K̃ 2 = K2 (K3 + K4 + K5) + K 2
3 + K 2

4 + K 2
5

(5)

Kinetic constants to determine are only three, namely K1, K2 and K̃ 2.
The most straightforward method to numerically estimate such kinetic constants is

that followed in [15], relying into a experimental cure-curve data fitting, performed
normalizing experimental data at peak to P0 and translating the initial rotation resis-
tance to zero, as suggested by Ding and Leonov [34].

In [15], K1, K2 and K̃ 2 variables are found through a standard nonlinear least
square routine. To make the notation easier, we consider in the following as one of the
free variables to optimize K̃1 instead of K1, having defined K̃1 = P0 K1.

A simplified but quite effective approach has been very recently proposed in [16],
where iterative algorithms on a less complex version of Eq. (5) have been used to
separately evaluate constants. The approach has been tested on real scale examples,
showing good stability and errors generally not exceeding 5 %.

123



J Math Chem (2013) 51:465–491 473

Here the research is further put forward and a new fully numerical procedure is
proposed to evaluate exactly unknown kinetic constants.

The advantage with respect to [16] procedure is that in this case the evaluation of
K1, K2 and K̃ 2 occurs utilizing the actual error functions evaluated on experimental
data, as it will be shown hereafter.

In the common case of compounds with little or no reversion, K̃ kinetic constant
is assumed reasonably equal to zero, and hence Eq. (5) simplifies as follows, being
|α| ≈ |β| ≈ K2/2 and ρ = P0 K2/(K̃1 − K2):

Pv (t) = C1 − ρ
K̃1

K2
e−K2t + ρe−K̃1t = ρ

(

K̃1

2β
− 1

)

− ρ
K̃1

K2
e−K2t + ρe−K̃1t

= P0 K2
(

K̃1 − K2

)

(

K̃1

K2
− 1 + e−K̃1t − K̃1

K2
e−K2t

)

(6)

⇒ Pv (t) = P0

⎡

⎣1 + K2
(

K̃1 − K2

)e−K̃1t − K̃1
(

K̃1 − K2

)e−K2t

⎤

⎦

Assuming to have at disposal values of the normalized torque (either experimen-
tal or derived from the aforementioned exponential numerical model) at increasing
instants ti , hereafter called Pexp(ti ), it is possible to evaluate the total relative error
function as:

e
(

K̃1, K2

)

=
Nsam
∑

i=1

∣

∣Pexp (ti ) − Pv (t)
∣

∣

Pexp (ti )

=
Nsam
∑

i=1

∣

∣

∣

∣

∣

Pexp(ti ) − P0

[

1 + K2
(

K̃1−K2

)e−K̃1ti − K̃1
(

K̃1−K2

)e−K2ti

]∣

∣

∣

∣

∣

Pexp (ti )
(7)

where Nsam is the number of sampled instants where the torque is known.
Equation (7) is a function depending on two variables (K̃1 and K2) which is not

analytically known, but may be easily plotted point by point with a regular mesh-grid
for K̃1 and K2.

A common procedure, used as comparison in the paper, to find local minima for
function (7) within an unconstrained minimization scheme is the well-known BFGS
Quasi-Newton method with cubic line search procedure [30]. Usually, the BFGS for-
mula for updating the approximation of the Hessian matrix is used.

However, since function (7) is the sum of single contributions on discrete sampled
points, it appears quite beneficial the utilization of a Generic Algorithm instead of
traditional optimization, requiring a GA only the iterated evaluation of the objective
function on specific sampled points.

Here it is worth noting that function (7) is symmetric in K̃1 and K2, i.e.
e%(K̃1, K2) = e%(K2, K̃1).
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This implies that the minimum of the total relative error will be achieved at least in
correspondence of two points, placed symmetrically with respect to the bisector axis.

Values of K̃1 and K2 which minimize e%(K̃1, K2) are those which allow to fit as
close as possible experimental data. To find such points it would be necessary to study
first of all if stationary points for (7) exist. At this aim, the gradient of (7) may be
written as follows:

e%

(

K̃1, K2

)

=
Nsam
∑

i=1

∣

∣Pexp(ti ) − Pv (t)
∣

∣

Pexp(ti )

=
Nsam
∑

i=1

∣

∣

∣

∣

∣

Pexp (ti ) − P0

[

1 + K2
(

K̃1−K2

)e−K̃1ti − K̃1
(

K̃1−K2

)e−K2ti

]∣

∣

∣

∣

∣

Pexp (ti )

⎡

⎢

⎣

∂e
(

K̃1,K2

)

∂ K̃1

∂e
(

K̃1,K2

)

∂K2

⎤

⎥

⎦ =

⎡

⎢

⎢

⎢

⎢

⎣

P0
Pexp(ti )

Nsam∑

i=1

∣

∣

∣

∣

∣

− K2e−K̃1 ti
(

K̃1−K2

)2 − ti K2e−K̃1 ti
(

K̃1−K2

) + K1e−K2 ti
(

K̃1−K2

)2 − e−K2 ti
(

K̃1−K2

)

∣

∣

∣

∣

∣

P0
Pexp(ti )

Nsam∑

i=1

∣

∣

∣

∣

∣

− K̃1e−K̃2 ti
(

K̃1−K2

)2 + ti K̃1e−K̃2 ti
(

K̃1−K2

) + K̃2e−K1 ti
(

K̃1−K2

)2 + e−K̃1 ti
(

K̃1−K2

)

∣

∣

∣

∣

∣

⎤

⎥

⎥

⎥

⎥

⎦

(8)

To evaluate stationary point from (7) and the typology of stationarity by means of the
Hessian is not an easy task. An alternative to solve the non-liner system of Eq. (8)

numerically is the following. Let’s assume as f (K̃1, K2) = ∂e(K̃1,K2)

∂ K̃1
= 0 and

g(K̃1, K2) = ∂e(K̃1,K2)

∂ K̃2
= 0. It is possible to plot f (K̃1, K2) = 0 assuming a priori

a value for K2, say K̄2, and find the zero of the single variable function f (K̃1, K̄2)

with a standard Newton approach. The same may be repeated for g(K̃1, K2) = 0.
The point of intersection of the two implicit functions will obviously represent the

minimum point for (7).
Having defined with emin

% the minimum total relative error corresponding to point
(K̃ min

1 , K min
2 ), the symmetric point (K min

2 , K̃ min
1 ) will be associated to the same mini-

mum error. For physical reasons related to reaction velocity we implicitly assumed the
solution point (K̃ min

1 , K min
2 ) as effective solution for both the traditional optimization

and GA problems under consideration.
When (K min

2 , K̃ min
1 ) values are know either from classic optimization strategy or

GAs, the third kinetic constant may be evaluated again from an error function, say e2,
but in this case evaluated using (5). To summarize, function e2 is the following:

Pv (t) = ρ

(

K1 P0

2β
+ α

2β
− 1

2

)

e(α+β)t +
(

− K1 P0

2β
− α

2β
− 1

2

)

e(α−β)t + ρe−K1 P0t

ρ = K1 K2 P2
0

[

(K1 P0)
2 − K2 (K1 P0) + K̃ 2

]−1
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α = − K2

2

β =
√

(K2/2)2 − K̃ 2

e2

(

K̃
)

=
Nsam
∑

i=1

∣

∣Pexp (ti ) − Pv (t)
∣

∣

Pexp (ti )

=
Nsam
∑

i=1

∣

∣

∣Pexp(ti )−ρ
(

K1 P0
2β

+ α
2β

− 1
2

)

e(α+β)t +
(

− K1 P0
2β

− α
2β

− 1
2

)

e(α−β)t +ρe−K1 P0t
∣

∣

∣

Pexp (ti )

(9)

3.1 The genetic algorithm proposed

The advantage of using a GA instead of traditional methods is very straightforward for
the case under consideration and is essentially related to the fact that total relative error
functions are evaluated on a finite number of (experimental) points and are obtained
through a sum operator.

Hence, it is expected that the evaluation of kinetic constants K1, K2 and K̃ 2 is eas-
ier and requires less time to be performed using genetic schemes [31–33], where only
repeated computations of the values assumed by the objective function on a limited
number of sampled points is needed. In addition, the theoretical simplicity of the GAs
makes them quite immediate to be implemented in a computer code.

Genetic algorithms belong the large family of meta-heuristic methods, which result
rather suited for solving both constrained and unconstrained optimization problems
basing on natural selection, the process that drives biological evolution. A genetic
algorithm repeatedly modifies a population of individual solutions. At each step, GA
individuals are selected randomly from the current population to be parents and uti-
lized to produce the children for the next generation. Over successive generations,
the population “evolves” toward an optimal solution. Typically genetic algorithms are
used to solve a variety of optimization problems that are not well suited for stan-
dard optimization algorithms, including problems in which the objective function is
discontinuous, non-differentiable, stochastic, or highly nonlinear.

The kernel of the GA proposed has been already successfully applied to a variety
of different chemical problems (see e.g. [14,41]) and relies into a set of both standard
genetic operations (reproduction, crossover and mutation) and non-standard proce-
dures, such as zooming and elitist strategy (see [41] for further details on this issue).

Hereafter, a very concise overview of the procedures used is summarized for the
sake of conciseness: the reader interested to details of the non-standard GA approach
proposed is referred to [14,41].

“Selection” rules select a part of individuals contributing as parents to the popula-
tion at the next generation. “Crossover” combines two parents to form children for the
next generation, whereas “mutation” applies random changes to individual parents to
form children.

“Zooming” and the “elitist tool” are strictly related and consist in sub-dividing the
initial population into two groups, say:
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x̄ = {x̄i : i = 1, . . . , Nelit |xi admissible}
y = x − x̄ = {yi : i = 1 :, . . . , Nind − Nelit } (10)

where Nelit is the number of “elite” individuals, i.e. points with sufficiently good
fitness, Nind is the total number of individuals and x is the individuals vector.

The core of the so called “zooming strategy” consists in collecting at each iteration
the individuals with higher fitness into an “elite” sub-population x̄ (with user defined
dimension Nelit ). Then, for each individual belonging to group x̄, only mutation (with
high probability) is applied in order to improve individuals fitness. Two different muta-
tion algorithms are utilized, differing only on the number of cells of each individual
involved by the mutation process.

Subsequently, an elitist strategy preserves the original individual if mutation results
in a reduction of individual fitness, whereas zooming technique restricts search
domain, so improving in any case convergence rate.

From a practical point of view, zooming has to be a priori set by the user by means
of the so called zooming percentage z% defined as the percentage ratio between x
initial population and x̄ sub-population dimension, i.e.:

z% = Nelit

Nind
100 (11)

Even if the zooming percentage is taken constant in this paper, z% can be reduced
if necessary at user’s desire, passing from the i th iteration to the successive, following
the exponential reduction proposed by Milani and Milani in [41].

Mutation is applied with high probability directly on existing individuals. As already
pointed out, two types of mutation are used (here denoted as 1st and 2nd type).

1st type is the classic mutation and is applied both on x̄ and y individuals. For each
individual x̄i (or yi ) it works stochastically on all the chromosomes (i.e. changing at
random one of the individual columns from 1 to Nbit ). The procedure is repeated once
on Nmut different individuals. Obviously, first type mutation results in a new individ-
ual in which only one of the optimization independent variables, after chromosomes
decoding, results changed with respect to the original individual.

2nd type mutation is applied only to x̄ individuals, in order to obtain a further
improvement of their fitness. It works analogously to the first type algorithm, with
the only difference that it changes, for the individual subjected to mutation, a chro-
mosome belonging to K̃1 and K2 respectively. Thus, the resulting individual after
chromosomes decoding is different from the original one for all the kinetic constants.
The procedure is repeated on Nmut2 individuals. Both Nmut first type mutations and
Nmut2 second type mutations are user defined.

The final result of the application of both first and second type mutation is a new
admissible individual x̄i M with different fitness with respect to x̄i . If x̄i M fitness is
higher than that of the original individual (note that the check is executed at each Nmut

iteration), x̄i is overwritten with x̄i M . All the fitting procedure is handled within the
Matlab software by means of non standard routines implemented at this aim by the
author.
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To solve optimization problem (8), each individual is identified by a pair (K̃ i
1, K i

2)
and encoded into binary strings. Since individuals are stored as a sequence of two real
positive numbers, their encoding by means of binary strings results particularly easy.
In this way, the genotypes (chromosome values) can be uniquely mapped onto the
decision variable (phenotypic) domain. In a standard GA procedure, the use of Gray
coding is necessary to avoid a hidden representational bias in conventional binary rep-
resentation as the Hamming distance between adjacent values is constant (see Holstien
[32] and Haupt and Haupt [33]).

Within the GA scheme, also a limitation in form of linear inequalities is provided,
to assure that K i

2 < K̃ i
1 and K̃ i

1, K i
2 > 0. Such a standard constraints obviously are

accounted for both within mutation and crossover operations, assuming as inadmissi-
ble children not respecting the aforementioned inequalities.

The author compared the performance of standard optimization approaches [both
unconstrained optimization (7) and non-linear system of Eq. (8)] to find (K̃ i

1, K i
2) pair

which minimizes e function to GA performance, as it will be shown in the numerical
analyses reported hereafter, finding a substantial advantage in the use of GAs.

Genetic Algorithms may be also used to find kinetic constant K̃ (or equivalently
K̃ 2), minimizing error function e2(K̃ ) in Eq. (9), but in this case the utilization of a
standard Newton approach appears still enough efficient, being e2 a single variable
function.

4 Numerical applications

The efficiency of the GA approach proposed is tested on an EPDM blend with exper-
imental data available from the literature [18]. Experimental data basically rely into
cure curves performed at three different temperatures, namely 160, 180 and 200 ◦C.
Three different temperatures are considered, in order to have information on the vari-
ability of kinetic constants with respect to temperature.

To perform a numerical optimization of the kinetic model proposed, experimental
cure values are normalized dividing each point of the curve by the maximum torque
values, so that experimental data are always within the range 0–1, and cutting the first
part of the curves before the scorch time. Indeed, the first descending branch of the
rheometer chart is the result of a typical behavior of unvulcanized rubber connected
to viscosity, which cannot be reproduced with kinetic models.

Rheometer charts were obtained by mean of a Monsanto Oscillating Disc Rheom-
eter ODR with an arc deflexion of 3◦. The compound exhibits a medium-high level of
unsaturation: it is therefore quite indicated to check the predictivity of the model pro-
posed, because unsaturation always corresponds to remarkable reversion. It is worth
remembering that a reversion condition is the most difficult characteristic to reproduce
with any numerical model and it is hence a good benchmark to test the reliability of the
present approach. The composition of the EPDM hereafter considered is schematically
summarized in Table 2.

In Fig. 2, a comparison among cure curves provided by the present approach, alter-
native numerical models and experimental results is sketched for a temperature equal
to 160 ◦C.
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Table 2 Experimental data set
rubber composition

Polymer type used DUTRAL 4334

% of Propylene content by wt 27

% ENB by wt 4.7

% oil by wt 30

Formulation for white items Description in phr

Polymer Dutral 4334 140

Zinc oxide Activator 5

Stearic acid Co-agent 3

Clay Filler 400

Titanium bioxide Co-agent whitener 15

Paraffinic oil Wax additive 40

Sulphur Vulcanization agent 2

TMTD Accelerator 2

Tetramethylthiuram disulfide

MBT2 Acceleretor 2

Mercaptobenzothiazole

Characteristics of the compound

ML(1+4)100 ◦C 67

ODR at 180 ◦C t2 1’06”

t90 5’30”

Characteristics of the vulcanized compound

Tensile strength Kg/cm2 80

Elongation at break % 600

Hardness Shore A 74

The continuous thick blue curve is the full experimental curve obtained by ODR
tests, whereas the continuous line with diamond symbols is the representation,
in the normalized rheometer chart, of Eq. (6), i.e. the model without reversion.
Dashed curve represents Eq. (5) where kinetic constants K1, K2 and K̃ are eval-
uated using the present GA approach. Green thin line with green diamonds the
same Eq. (5) where kinetic constants are obtained with a non-linear least squares
routine, as suggested in [14,15]. As it is possible to notice, the agreement among
all models is almost perfect, within all the time range inspected. Even Eq. (6),
which is a theoretical model without reversion, fits very well experimental data.
This is not surprising, because very little or no reversion is expected at low curing
temperatures. GA and least-squares approaches provide almost identical results, as
also confirmed by the very small difference among kinematic constants values, see
Table 3.

In Fig. 3, error function (7) is graphically represented in the K̃1 − K2 domain,
with optimization points found using a traditional gradient approach (a, b) and the
present GA procedure (c, d). Data are reported both using a 3D representation and in
the K̃1 − K2 plane, for the sake of clearness.
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Fig. 2 Experimental data set at 160 ◦C. Comparison between numerical and experimental curing time-
normalized torque (crosslinking density) curves. Top entire curve. Bottom detail

Graphics clearly show that both gradient and GA approach reach the same optimal
solution, but with a substantial advantage for GA, which seems to correctly optimize
after very few iterations, as also shown by the best fitness function evaluation reported
in Fig. 4.

Once K̃1, K2 are estimated with either traditional or heuristic approaches, the eval-
uation of K̃ is very straightforward finding zeros of Eq. (9). A representation at 160 ◦C
of error function e2, with the indication of the optimal value for K̃ is provided in Fig. 5.
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Table 3 Experimental data set

Kinetic constant
[1/sec]

Non-linear
least-squares

Simplified
method [16]

Present
direct model

% error (1) % error (2)

160 ◦C

K1 0.5671 0.5718 0.5599 1.27 2.08

K2 1.2567 1.2418 1.2633 −0.52 −1.73

K̃ 0.0492 0.0477 0.04800 2.44 −0.63

180 ◦C

K1 0.8903 0.9101 0.8633 3.03 5.14

K2 2.5501 2.4374 2.6335 −3.27 −8.04

K̃ 0.1610 0.1578 0.1591 1.18 −0.82

200 ◦C

K1 1.8106 1.7469 1.7061 5.77 2.33

K2 7.5407 7.9126 8.078 −7.12 −2.09

K̃ 0.5702 0.5839 0.5700 0.03 2.38

Comparison between kinetic constants evaluated by means of the exponential model and the simplified
direct model
(1) With least-squares
(2) With simplified method

Having at disposal K̃1, K2 and K̃ from the numerical procedure proposed, Eq. (5)
may be used directly to fit experimental data with the exponential model, with a direct
visual comparison on the normalized cure curves, Fig. 2.

In Table 3, a comparison among kinetic constants provided by least squares fitting
[14–16] simplified direct method procedure and present GA approach is summarized.
The agreement is very satisfactory, with percentage errors not exceeding 5 % in the
most unfavourable case, a result which seems very satisfactory having in mind the
practical application of the model proposed.

In Fig. 6, a graphical representation of the procedure used to evaluate K̃1 and K2
from the non-linear system of Eq. (8) is provided. In particular, in Fig. 7a, implicit

functions f (K̃1, K2) = ∂e(K̃1,K2)

∂ K̃1
= 0 and g(K̃1, K2) = ∂e(K̃1,K2)

∂ K̃2
= 0 are sketched

in the K2 − K̃1 plane. Their intersection identifies the stationary point for error func-
tion e, which is also the local minimum in the K2 > K̃1 region. In Fig. 6b, c, the

error e of Eq. (7) evaluated for points belonging to curve g(K̃1, K2) = ∂e(K̃1,K2)

∂ K̃2
= 0

is represented in the K2 − e and K̃1 − e planes respectively. As can be seen, a quite
visible minimum point is present is both cases, which allows a direct evaluation of
kinetic constants K̃1 and K2.

While in this case (curing temperature equal to 160 ◦C), such graphical approach is
not strictly necessary to find K̃1 and K2 values minimizing e, it will be very useful for
curing temperatures equal to 180 and 200 ◦C, where it is found that implicit functions

f (K̃1, K2) = ∂e(K̃1,K2)

∂ K̃1
= 0 and g(K̃1, K2) = ∂e(K̃1,K2)

∂ K̃2
= 0 almost coincide.

123



J Math Chem (2013) 51:465–491 481

Gradient based optimization 

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

-a -b 

GA optimization 

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

-c -d 

Fig. 3 Experimental data set at 160 ◦C. Representation of the e error function in the K̃1 − K2 domain, and
successive optimal points from gradient method (a) & (b) and GA (c) & (d)

Finally, in Fig. 6d, a representation of the error e for points belonging to

g(K̃1, K2) = ∂e(K̃1,K2)

∂ K̃2
= 0 superimposed to the 3D error e surface is provided,

to give a quite direct, albeit approximate, idea of the location of the minimum
point.

Comparisons among all models for temperatures equal to 180 and 200 ◦C are rep-
licated in Figs. 7, 8, 9, 10, 11, 12, 13, and 14, again with a representation of the error
functions e and e2.

In both cases (see Figs. 7, 11 for curing temperatures equal to 180 and 200 ◦C,
respectively), the agreement with the experimental response is very accurate. As can
be noted, very few experimental points are needed to obtain quite reliable reproduc-
tions of the actual experimental curves.

As expected, reversion is rather marked at 200 ◦C, but has a perceivable effect also
for the cure curve at 180 ◦C. In both these latter cases, Eq. (6) model progressively
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Fig. 4 Experimental data set at 160 ◦C. Representation of GA best and mean fitness values at successive
iterations (a) and b fitness of each individual at the last generation (60) with the number of children produced

loses accuracy, especially at increasing curing times, being reversion completely dis-
regarded.

In Figs. 8 and 12, the efficiency of the GA approach is compared to the standard
gradient method [30] at 180 and 200 ◦C respectively. As it is possible to notice from the
2D representation of the points with best fitness at successive iterations (Figs. 8d, 12d),
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Fig. 5 Experimental data set at 160 ◦C. Representation of the cumulative e2 error function in the K̃ domain
and optimal point provided either by gradient method or GA
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Fig. 6 Experimental data set at 160 ◦C. a ∂e/∂ K̃1 = 0 and ∂e/∂K2 = 0 functions. b K2 − e function
on ∂e/∂K2 = 0. c K̃1 − e function on ∂e/∂K2 = 0. d Representation of ∂e/∂K2 = 0 on the 3D error
function e
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Fig. 7 Experimental data set at 180 ◦C. Comparison between numerical and experimental curing time-
normalized torque (crosslinking density) curves. Top entire curve. Bottom detail

the number of iterations needed within the GA scheme to obtain solutions near the
optimal points is much reduced and clearly smaller than those required by a standard
gradient method. Author experienced that the performance of the algorithm seems to
increase regularly with curing temperature (compare, for instance Figs. 3, 8, 12).

Constants K̃ at 180 and 200 ◦C are again evaluated minimizing function e2.
A representation of function e2 with the indication of the minimum point corresponding
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Fig. 8 Experimental data set at 180 ◦C. Representation of the e error function in the K̃1 − K2 domain, and
successive optimal points from gradient method (a) & (b) and GA (c) & (d)
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Fig. 9 Experimental data set at 180 ◦C. Representation of the cumulative e2 error function in the K̃ domain
and optimal point provided either by gradient method or GA
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Fig. 10 Experimental data set at 180 ◦C. a ∂e/∂ K̃1 = 0 and ∂e/∂K2 = 0 functions. b K2 − e function
on ∂e/∂K2 = 0. c K̃1 − e function on ∂e/∂K2 = 0. d Representation of ∂e/∂K2 = 0 on the 3D error
function e

to the actual kinetic constant K̃ is provided in Figs. 9 and 13 for temperatures equal
to 180 and 200 ◦C respectively.

Finally in Figs. 10a and 14a, implicit functions f (K̃1, K2) = ∂e(K̃1,K2)

∂ K̃1
= 0 and

g(K̃1, K2) = ∂e(K̃1,K2)

∂ K̃2
= 0 are represented. As can be noted, for both cure temper-

atures (180 and 200 ◦C) functions f and g almost coincide, making the procedure
summarized in Eq. (8) inapplicable in practice. To circumvent this limitation, values
of kinematic constants K̃1 and K2 which minimize error function e are found with a
graphical procedure simply plotting error e for points belonging either to functions
f and g in the K2 − e and K̃1 − e planes respectively.

Values of constants K̃1 and K2 may be determined either numerically of graphically
from Fig. 10b, c at 180 ◦C and from Fig. 14b, c at 200 ◦C.

Finally, to have an immediate insight into the approximate position of the local
minimum, in Fig. 10d (180 ◦C) and Fig. 14d (200 ◦C), error e for points belonging to

g(K̃1, K2) = ∂e(K̃1,K2)

∂ K̃2
= 0 is superimposed to the 3D error e surface.
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Fig. 11 Experimental data set at 200 ◦C. Comparison between numerical and experimental curing time-
normalized torque (crosslinking density) curves. Top entire curve. Bottom detail

5 Conclusions

In the present paper, a new GA approach has been utilized to determine reaction kinetic
constants within an existing mathematical procedure [14,15], aimed at interpreting
EPDM accelerated sulphur curing.
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Fig. 12 Experimental data set at 200 ◦C. Representation of the e error function in the K̃1 − K2 domain,
and successive optimal points from gradient method (a) & (b) and GA (c) & (d)

The existing mathematical model bases on a preliminary characterization of rubber
through standard rheometer tests and allows an accurate prediction of the crosslinking
degree at both successive curing times and different controlled temperatures.

While in [14,15] a calibration of three kinetic constants at fixed temperature by
means of non-linear least-squares fitting was required, the method here proposed cir-
cumvents the typical inefficiencies of non-linear data fitting and avoids possible non
convergence limitations, disregarding at a first attempt reversion and finding the local
minimum of a suitable two-variable error function, to have an estimate of the first two
kinetic constants. A comparison between present GA approach and traditional gradient
based algorithms has been also discussed, with a substantial reduction of optimiza-
tion time needed. The last constant, representing reversion has been evaluated through
a minimization performed on a single variable error function. The applicability of
the approach is immediate and makes the model extremely appealing when fast and
reliable estimates of crosslinking density of cured EPDM are required. To show the
capabilities of the approach proposed, a comprehensive comparison with both avail-
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Fig. 13 Experimental data set at 200 ◦C. Representation of the cumulative e2 error function in the K̃
domain and optimal point provided either by gradient method or GA
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Fig. 14 Experimental data set at 200 ◦C. a ∂e/∂ K̃1 = 0 and ∂e/∂K2 = 0 functions. b K2 − e function
on ∂e/∂K2 = 0. c K̃1 − e function on ∂e/∂K2 = 0. d Representation of ∂e/∂K2 = 0 on the 3D error
function e
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able experimental data and results obtained numerically with a least square exponential
model for a real compound at different temperatures has been finally provided.
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